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The transition temperature of a superconductor depends on ct2F(co), the spectral 
function of the effective interaction due to phonon exchange. We discuss how strongly 
the transition temperature is influenced by different frequency parts of ~2F(co). For 
this purpose the functional derivative ~Tc/&~2F(co) is calculated. It is shown that all 
frequency regions of ~2F(O) yield a positive contribution to T c and that the most effec- 
tive range covers frequencies, slightly above 2 nT  c. The functional derivative is calculated 
numerically for several superconductors from their measured ~2F(co)-spectra. Finally, 
we discuss the change in transition temperature due to the softening of 0~2F(co) which 
has been observed in amorphous superconductors. 

2. Introduction 

In superconducting tunneling experiments the Eliashberg function 
~2F(co)  and the Coulomb pseudopotential #* can be determined. The 
transition temperature of a superconductor can be calculated in terms 
of these quantities using the linearized Eliashberg equations [1]. Such 
calculations reflect an integral property of the total spectrum ~2F(co) 
and do not answer the question of how much different frequency parts 
of ~2 F(co) contribute to the calculated transition temperature T c. 

To investigate this problem one can calculate A Tc, the change of 
the transition temperature which would result if ~2F(co) is set equal 
to zero in a frequency interval between coo and coo + A co. For small A co 
the change A T  c is proportional to c~2F(coo) multiplied by a weighting 
factor. This weighting factor is simply the appropriate functional 
derivative, i.e. 

fi Tc (COo) c~ 2 F(o9o) A co. (1) ATe= ,~.2 F(co ) 

The functional derivative, considered as a function of frequency, can 
therefore be thought of as a measure of the strength of the influence 
of a particular frequency on T c. In this sense a calculation of the functional 
derivative tells one how favourable a certain frequency range is for an 
increase of the transition temperature. By means of the functional 
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derivative we can also investigate whether sufficiently low lying phonons 
are "pair-breaking" as has been suggested recently [2]. If such an effect 
exists the functional derivative would be negative in that frequency 
range. In all examples considered here the functional derivative is always 
positive. Furthermore we can prove this property rigorously for #*=0  
(see Appendix A). Therefore we are convinced that in thermal equi- 
librium phonons never have a pair-breaking effect on the transition 
temperature. In w we express the functional derivative 6Tc/6eZF(co) 
in terms of A (co,), the solution of the linearized Eliashberg-equations. 
In w we present numerical results for several superconductors both 
crystalline (Sn, T1, In, Hg, Pb) and amorphous (Ga, Bi, Pb0.vsBi0.25, 
Sno.9Cuo.x, Pbo.9Cuo.1). 

2. Theoretical Background 

The transition temperature of an isotropic strong-coupling super- 
conductor is determined by the linearized Eliashberg equations. For our 
purposes we found it advantageous to use the Eliashberg equations 
involving Green-functions defined at the imaginary frequency points 

ico~=Tri(2j+l)T, j = 0 ,  _4-1, ___2, ... 
n (2) 

A (coi) = Y Ej {2 (CO,-- CO j) -- p*} I (5jl + P A (co j), 

(Sj = m s + n T ~ sign co~ 2 (coj - 093. (3) 
l 

In such a Matsubara-type formulation of the Eliashberg equations 
effects related to the thermal excitations of electrons and phonons are 
automatically included. Thermal phonons must be included if one 
wants to study the influence of low lying phonons on the transition 
temperature [3]. In Eqs. (2) and (3) 2(co~-m~) describes the effective 
electron-electron attraction via exchange of phonons, and can be ex- 
pressed in terms of a spectral function conventionally denoted as ez F(co). 

| co~2 F(CO) 
~(co~-coj)=2o ~ &o co2 +(co _coj)2 �9 

The frequency summation in the gap equation (2) should be done 
up to a frequency of the order of the band width. For technical reasons 
one only does the summation up to a cut-off frequency somewhat 
larger than the maximum phonon frequency. The error caused by this 
restricted summation can be compensated by replacing the true Coulomb 
repulsion parameter # by a "pseudo-repulsion" #* [1]. Generally #* 
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depends on the chosen cut-off frequency. Since #* is determined from 
tunneling experiments using a cut-off at ten times the maximal phonon 
frequency [1, 4] we also chose this conventional cut-off frequency in 
our calculations. For convenience we introduced in Eq. (2) a pair- 
breaking parameter p. For a fixed temperature T the corresponding 
parameter p (T) is the largest p such that the linear gap equation has a non- 
vanishing solution A (con). From a calculation of p(T) one can obtain 
the transition temperature by solving the equation 

p(T~)=o. (4) 
p and T c are functionals of the spectral function e2F(o~). To study the 
relative strength of the influence of different frequency parts of 0~ 2 F(co) 
on the transition temperature we calculate the functional derivative 
6 rJa~2 F(co). 

This functional derivative has the following physical meaning. If 
~2F(co) is changed by a small amount A~2F(co), the resulting change 
ATc of the transition temperature is given by 

oo a t e  2 
Arc= ! d c o ~ A ~  F(o). (s)  

Within our numerical algorithm it is preferable to calculate first the 
functional derivative of the pair-breaking parameter p at fixed tempera- 
ture. The functional derivative of T c is connected with that of p by the 
relation 

';r 
c5~2F(~ (~~176 r=r~ ~ re 

The simplest way of obtaining c~ pl 6 0~ 2 F(co) is to transform the gap equation 
via the transformation 

A(coj) = [r I + P 

into a hermitian eigenvalue problem for p, 

p2(~,)= r~j (~,~(~ _ ~)_~.__t ~jl~r ~S,~} ~(~j). (7) 

The Feynman-Hellman theorem yields the functional derivative of p as 
the expectation value of the functional derivative of the kernel in Eq. (7) 
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with the eigenvector A(%). Expressing finally A(og.) by A (%) one obtains 

6p = n T ~ [  A(og,)A(coj) A 2(o9,) ] 
a~aF(a~) ~,i ([&~I+P)(I&jI+P) (I~,I+P) 2 signc~176 

co~ +(co~- a~j) ~ (i~,l +p)~ 

(8) 

For c~ ~.2nT~ this leads to the following behaviour of 6 Tc/6~2F(o)) a t  

low frequencies: 

aT~ . . . .  fZ(o~3a(co A A2(co3 
~ ~ ~ O . n l c ~  <- - - - -  sign~o~signcoj 

, ,y[  I~,li~jl I~,12 
2 f, dp "E A2(~ } -*" 

(ogi-coj) 2 I-- t iT- To , 1~3112 

(9) 

Thus the functional derivative goes to zero linearly at sufficiently low 
frequencies. This reduced influence of low frequency modes on T c can 
be heuristically understood in the following way. At Tc the superconduc- 
tor cannot feel the dynamics of lattice oscillations with frequencies small 
compared to T~. Such lattice modes act more like static lattice 
deformations which have no influence on T c according to Andersons 
theorem. 

In Appendix A we prove rigorously (for #*=0) that the functional 
derivative of p has always a positive sign. This implies that the functional 
derivative of T c which differs only by the positive factor ( -dp /dT) -1 ,  
is also a positive function. 

In order to calculate the functional derivative of Tc one needs A (ogj), 
the solution of the linearized gap equation and the slope of the pair- 
breaking parameter at To. The algorithm for our numerical calculation 
of these quantities is described in appendix B. 

3. Results and Discussion 

We have calculated the functional derivative of the transition tem- 
perature for several realistic superconductors whose Eliashberg function 
~2F(~o) and #* have been determined experimentally [5-10]*. 
6 Tc/~ et 2 F(~o) is shown in Fig. 1 for crystalline Sn, T1, In, Hg, Pb and for 
amorphous Sno.9Cuo.1, Pbo.9Cuo.l, Ga, Bi, Pbo.7sBio.25. This collection 
of data demonstrates that the general shape of the functional derivatives 
is very insensitive to the different shapes of the corresponding ct2F(co) - 

* Most of these data are tabulated by Rowell, McMillan and Dynes [11]. 
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Fig. 1. Frequency dependence of the functional derivative 5 Tc/JO~2F(o)) 

Table 1. Characteristic data of the investigated superconductors. The three tabulated 
transition temperatures are experimentally measured (T c exp), calculated from Eq. (2--4) 
(Tcse) and calculated from McMillan's formula [12] for the transition temperature 

(TcMM) 

Alloy State 2 fl* (03) f 0~2 F((.o) a(D Zcexp Zcs c TeM M dp 
I~ I~ I~ I~ I~ dZ 

Sn crystalline 0.716 0.111 111 40.0 3.7 3.9 3.7 0.98 
TI crystalline 0.795 0.135 58 23.2 2.4 2.4 2.1 1.03 
In crystalline 0.805 0.121 80 32.0 3.4 3.4 3.3 1.05 
Sno.gCuo. 1 amorphous 1.9 0.04 44 41.6 6.8 6.6 6.9 1.37 
Pbo.gCuo. t amorphous 2.08 0.04 35 35.5 6.5 6.1 5.8 1.51 
Hg crystalline 1 .63  0.11 38 30.8 4.2 4.4 4,5 1.58 
Ga amorphous 2.29 0.17 62 71.5 8.5 8.8 8.4 1.63 
Bi amorphous 2.49 0.11 33 40,8 6.2 5.9 5.3 1.66 
Pb crystalline 1 .55  0.13 63 48.6 7.2 7.4 6.8 1.70 
Pbo.75Bio.zs amorphous 2.76 0.14 34 46.8 6.9 6.9 5.5 1.89 

spectra.  Concern ing  the func t iona l  derivat ive the mos t  i m p o r t a n t  pa ra -  
meter  for  a pa r t i cu la r  superconduc to r  is its t rans i t ion  t empera tu re  since 
i t  de termines  the  scale fac tor  for  the f requency dependence  of the func- 
t ional  derivative.  The different  ampl i tudes  of the  funct ional  derivatives 
are  main ly  due to  differences in d p / d T  (see Eq, 6). d p / d T  at  T c is t abu la t ed  
in Table  1 toge ther  with o ther  character is t ic  proper t ies  of the super-  
conduc to rs  invest igated.  
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Fig. 2a and b. c~2F(~) (dashed line) and 6Tc/6o:2F(eg) (full line) for In and Hg. The 

dotted line shows the functional derivative of McMillan's formula* 

Generally 6 Td5 ~2F(09) starts  linearly at the origin and has a maxi- 
mum slightly above oJ/Tc=2n. The frequency where the functional 
derivative is largest can be thought of as the "optimal frequency" for a 
high transition temperature, since any shift of e2 F- weight into this region 
causes an increase of the transition temperature. The small functional 
derivative in the very low frequency region below T~ means that changes 
of e2F(~o) in this range have no essential influence on the transition 
temperature. This is in contrast to the influence of the low frequency 
part of e2F(m) on the electron-phonon coupling parameter 2, 

) .=2S aa F(~176 
0 o.) 

2 depends sensitively on the low frequency behaviour of ~2 F((o). 

* From McMillans interpolation formula for the transition temperature, 

1.o4(1+ ) _], 
To= exp [ J 

j'~2 F(a)) do~ 
(~o) =-~-F(co)  do)/a)' 

one obtains the functional derivative 

6To 2 + ( 1 . 0 4  1 §  2 ]  
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Fig. 3 a and b. c~ 2 F(o)) and c~ TclSCr 2 F(o)) for crystalline Pb and amorphous Pb0.TeBio,es 

5~ 
5c?F 

0.4- 

0.3- 

02- 

0.1 

0 

\ 

! ! 

I I 
4 / 

I 

A 

2 F 

0.4 

"a3 

-02 

"0J 

0 
I'2 I'6 20 

co [m eVl 
a 

~m~ 

Q2 

0,1" 

7 / \ 
' -  \ 

\ 
-2 .  i ' ~  i ~ - - ~ '  

dF 

-0.3 

-0,2 

-0.1 

0 
6 12 16 20 

w[m eV] 
b 

Fig. 4a and b. c~2F(o)) and 5Tc/6o:ZF(o) ) for crystalline Sn and amorphous Sno.oCuo. 1 

The functional derivative of T c is shown in Figs. 2-4 together with 
the corresponding Eliashberg function calF(o)) for several characteristic 
superconductors. We want to demonstrate for these examples the relative 
location of the "optimal frequency" and the transverse and longitudinal 
phonon peaks in c~2F(co). For In, an example of a weak coupling super- 
conductor, both the transverse and longitudinal phonon peaks lie above 
the "optimal frequency", whereas for the strong coupling superconductor 
Hg the transverse phonon peak lies slightly below the optimal frequency. 
In Fig. 3, crystalline Pb is compared with amorphous Pbo.75Bio.25. For 
crystalline Pb the transverse phonon peak coincides with the optimal 
frequency. In amorphous Pbo.75Bio.~5 this peak is shifted towards lower 
frequencies. The total weight of c~ 2 F(r is nearly unchanged (see Table 1). 
This shift of e2F(ra) into a less favourable frequency range is the reason 

5 Z. Physik, Bd. 263 
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for the decrease of the transition temperature in the amorphous state of 
Pb. For the weak coupling superconductor Sn the situation is quite diffe- 
rent. Fig. 4a shows that for crystalline Sn the main weight of c~2F(o9) 
lies above the optimal frequency. The "softening" of e2F(e~), which 
is observed in the amorphous phase (Fig. 4b) then shifts the weight of 
e2F(co) into a more favourable frequency range. This results in an in- 
creased transition temperature. Again S c~2F(o))dm remains nearly un- 
changed (see Table 1). 

These examples demonstrate that a "softening" of ct2F(co) can result 
in either a positive or a negative change in the transition temperature 
and that this effect can be explained by means of the characteristic shape 
of the functional derivative of To. 

We would like to thank A. Baratoff for helpful discussions during the course of 
this study. 

Appendix A 
To prove that 6p/Jo~2F(e)) is positive we first notice that the deno- 

minator in Eq. (8) is positive. To investigate the sign of the numerator 
we rewrite the latter in the form 

Here 

and 

Z e(o J)) 2-  
0 coi, c o j >  0 m = t .  

(Di+ t D j =  O m  

2.o, o y' 

corn=2 m 7rT, m=0,  1,2 ....  

a 
q~ (('Oi)= I c S ~ l + p  " 

2co 
ro z + co~" 

(A.1) 

We now use the fact that for # * = 0  the physically relevant solution 
A (co 3 of the linearized gap equation (Eq. 2) does not change sign and 
decreases for increasing leo, 1. This follows from the positive sign of all 
elements of the kernel in the gap equation and from the monotonic 
behaviour of 2(09,,). The above-mentioned properties of A (o9 3 also hold 
for (p (oh) and lead to the inequalities 

Z (9(mi)+~~176 2>2 Z q~z(c~ (A.2) 
O~t, ~ j > O  0 < O) l<  ~om 
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and 

2 2 (9(c&)-9(~ 2 ~ q)2(e),) �9 (A.3) 
a~t>0 0 <toi<tom 

One can therefore conclude immediately that the prefactors in front of 
the terms e)/(co2 +co 2) in the expression A 1 and therefore the total sum 
are never negative. 

Appendix B 

For  the numerical calculation of the order parameter  A (coi) and the 
pair-breaking parameter  p at fixed temperature T we use the following 
iteration procedure: 

,~.+ ~ (<o~) = 20(<oDi2.0cT),  

p.+~ =p.+(1-f,,)lf,; 
Here 

A.(%),  ~&)D= TF (,~(co,- coj)- m * ) s  l~Ssl +p. 

�9 IcS~l+p. IrS~l+p.'  

Fewer than ten iterations were necessary, in all cases considered, to obtain 
p (T) with relative accuracy of 10-s. In order to avoid small fluctuations 
arising f rom the discontinuous dependence of the matrix dimension on 
the temperature we used a temperature mesh such that the cut-off fre- 
quency is an odd multiple of rc 7". T c and dp/dT are calculated by quadratic 
interpolation of p (T) using the three temperature points nearest T c. 
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